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INTRODUCTION 

Electrolytic chromium has excellent properties, including: 

• A high melting point at 1875°C, compared to substrate steel at 1538°C 
• High hardness 800 to 1000 KHN50, compared to steel Rc 36 to 38 (360 to 380 KHN) 
• Low coefficient of friction 
• Excellent adhesion to substrate steel 
• An elastic modulus at 36xl06psi, compared to steel at 29xl06psi 
• Inert to aggressive propellant gases 

Electrolytic chromium has been the choice material to protect gun bores against high 
temperature wear and erosion. However, high contraction (HC) chromium coatings are known for 
intrinsic characteristic cracks, due to the buildup of high residual stresses causing the crystallites to 
coalesce. Improved low contraction (LC) chromium with fewer cracks has been under investigation 
(refs 1-3). Martyak and Weil (ref 4) reported an epitaxial relation between thin chromium deposits 
and copper and nickel substrates, and <111> fiber texture as the chromium deposit thickness 
increased. Our analysis showed <111> surface fiber texture in production HC chromium, but near 
random surface texture in LC chromium (ref 5). 

Texture affects residual stress determination of materials in several ways: texture renders 
many reflections unavailable for stress measurement, texture causes a nonlinear relation in d-spacing 
versus sin2\|/, and texture gradients can make stress measurement difficult. High tensile residual 
stress in HC chromium was reported by Pina et al. and Cassagne et al. (refs 6,7) assuming Kroner- 
Eshelby and Reuss models. Janda and Stefan (ref 8) reported stress measurements of chromium 
deposition on a thin circular plate. We reported high tensile stresses in laboratory HC specimens, but 
lower tensile stresses in production HC specimens, using a matrix inversion method (ref 9). This 
method was based on Clemens and Bain (ref 10), and simultaneously solved for unstrained latticed 
parameter and residual stress in highly textured thin films. Texture was accounted for explicitly. A 
modified sin2\|/ technique was also used to obtain x-ray residual stresses using multiple types of 
radiation and multiple families of reflection (refs 6,9). 

This work investigated the texture and residual stress state of two production LC chromium 
specimens deposited at 85°C onto the bore of a large-diameter steel cylinder: LC-A was deposited at 
high current density, and LC-B was deposited at half the current density used for LC-A. Crystalline 
structure in chromium electrodeposition was investigated using a Scintag PTS diffractometer and 
locally developed quantitative high-resolution pole figure software. Residual stress measurements 
were conducted on a TEC stress analyzer. The sin2V|/ method gave good results in near randomly 
oriented LC-A. In LC-B, x-ray measurements suffered from larger errors due to the presence of 
texture. A laboratory LC chromium specimen was also deposited onto a brass plate, and the radius- 
of-curvature method was used to determine residual stress. 



CRYSTALLINE TEXTURE OF LOW CONTRACTION CHROMIUM 

Figure 1 shows the x-ray diffraction patterns using copper K-a radiation for the two LC 
chromium specimens, LC-A and LC-B, compared to HC chromium and the International Center for 
Data Diffraction (ICDD) database for chromium. For LC-A. deposited at high bath temperature and 
high current density, all reflections had relative intensities near that of the random powder. Weak 
preferred [200] and [211] orientations were also observed. For LC-B. all reflections were observed, 
with strong preferred [211] and [111] orientation, and weak preferred [310] orientation. For HC 
chromium, a very strong preferred [111] orientation and a broadened diffraction peak were observed. 

Figure 2 shows (110) pole figures and compares LC-A, LC-B, and HC from / = 0 to 80°. 
The figure also shows the % cut-off cross sections. For LC-A, a broad and diffused pole figure was 
observed, disclosing near random texture. The weak ring around 40°% was due to the very weak 
preferred (200) and (211) crystallites. For LC-B, two fiber texture states, <211> and <111>, were 
observed. The two texture states were not well resolved, showing a broadened pole figure extending 
to high %-tilts. For HC chromium, sharper <111> fiber texture was observed with good in-plane 
azimuthal symmetry. 

RESIDUAL STRESS IN LOW CONTRACTION CHROMIUM 

Due to the strong texture of HC chromium, few reflections in the high 29 range were 
available for stress analysis. Residual stress was solved explicitly based on the Reuss model using a 
single family of reflection (ref 10). This method is applicable to cubic crystals when all of the 
crystallites favor one particular crystallographic orientation. Assuming an elastic isotropic model, 
residual stress was also determined using multiple radiation and multiple reflections. A near linear 
^-spacing versus sin~\j/ curve was obtained, using only a few available data points (refs 6,9). 

Near random texture existed in LC-A, and intermediate texture existed in LC-B. Residual 
stresses in the LC-A and LC-B were analyzed using the chromium (211) reflection at 153.26° 26 
using chromium radiation. These residual stresses were determined from 31 data points as shown in 
Figures 3 and 4. The near randomly oriented LC-A gave a good linear ^/-spacing versus sin2\j/ curve. 
The intermediately textured LC-B showed the influence of texture-both by the reduction of 
intensities at certain \|/-tilts, and by the nonlinearity in the sin2\|/ curve. Crystallite orientation 
distribution function (ODF) needs to be considered to improve residual stress determination (ref 11). 
Figure 5 shows that for HC chromium, the sin'y method failed completely. The positive psi angles 
gave an erroneous compressive stress of approximately -845 Ksi, and the negative psi angles gave 
erroneous tensile stresses of similar magnitude. Thus, residual stress was determined using a Matlab 
inversion method. A full-width,half-maximum analysis was performed for the (222) diffraction 
peaks, resulting in HC (2.66°), LC-A (1.85°), and LC-B (1.26°). 



CONCLUSIONS 

• X-ray determination of texture and residual stress results are summarized in Table 1. 

• The HC chromium specimen deposited at a low temperature of 55°C and low current density 
exhibited strong <111> fiber texture (ref 5). Higher surface tensile residual stresses were 
observed using a Matlab matrix inversion method. 

• LC chromium specimens were deposited at a high temperature of 85°C: LC-A deposited at high 
current density exhibited near random orientation, with very weak <100> and <211> fiber 
texture; LC-B deposited at half the current density exhibited mixed <111> and <211> fiber 
textures and a very weak <310> fiber texture. 

• Lower bi-axial tensile residual stresses were detected in the two LC specimens. Good residual 
stress measurements were achieved for near randomly oriented LC-A. For LC-B, x-ray residual 
stress measurements were low, suffering from large errors due to crystalline texture. 

A correlation was made between the degree of texture and residual stress. Highly textured HC 
chromium had higher tensile residual stress compared to more randomly oriented LC chromium, 
which had lower residual stresses. The stresses are believed to be responsible for the cracks 
observed, which directly affected the wear and erosion behavior of these coatings. 
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Table 1. Texture and Residual Stress in HC and LC Chromium Specimens 

Immersion HC Flow-Through 
LC-A 

Flow-Through 
LC-B 

Preferred Orientation (111) None (211)and (111) 

Texture Strong Fiber Weak Fiber Weak Mixed Fiber 

Method of Stress 
Determination 

Reuss Matrix 
Inversion 

Sin2xF Method Sin2vF Method 

Residual Stress (MPa) -315 133 ±10 167 ±27 
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Figure 1. X-ray diffraction patterns comparing intensities of HC, LC-A, and LC-B. 
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Figure 2. Chromium on steel (110) pole figures. 
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Figure 3. Residual stress in LC-A chromium coating. 
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Figure 4. Residual stress in LC-B chromium coating. 
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